

FAIRmat for Ellipsometry

- Supporting material for papers (figures are limited in papers)
- Available for:
 - Further analysis / experiment
 - Comparison with other samples

- ...

Dipole analysis of the dielectric function of color dispersive materials: Application to monoclinic Ga_2O_3

C. Sturm,¹ R. Schmidt-Grund,¹ C. Kranert,¹ J. Furthmüller,² F. Bechstedt,² and M. Grundmann¹

¹Institut für Experimentelle Physik II, Universität Leipzig, Linnéstrasse 5, 04103 Leipzig, Germany

²Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany

(Received 2 February 2016; revised manuscript received 27 May 2016; published 22 July 2016)

- Analysis of the data of different setups and experiments for deeper understanding
- Verification of the results
- Test of theory
- ...

- Supporting material for papers
 (figures are limited in papers)
- Available for :
 - Further analysis / experiment
 - Comparison with other samples

- ...

- Analysis of the data of different setups and experiments for deeper understanding
- Verification of the results
- Test of theory

- ...

- Supporting material for papers
 (figures are limited in papers)
- Available for :
 - Further analysis / experiment
 - Comparison with other samples

- Analysis of the data of different setups and experiments for deeper understanding
- Verification of the results
- Test of theory
- ...

- ..

Within own and external groups

Storage of ellipsometry data

Technology partners (e.g.):

Problem:

- Each technology partner has its own file format
- Within a technology partner the file format can be different

Ellipsometry data depends on:

- Sample properties (orientation, layer structure, ...)
- Angle of incidence
- Experimental setup (PSA, PSC, PSMA, ...)
- Detection mode (integration time, polarizer setting, ...)
- Excitation condition (time resolution, ...)
- Environment (temperature, stress and strain, gas, ...)
- ...

FIG. 3. Experimental (symbols) and calculated (lines) infrared spectra of the MM elements of a β -Ga₂O₃ bulk single crystal for an angle of incidence of 70°. The corresponding orientation of the crystal is given by the Euler angles on top of each column in the yzx notation.

What we want:

- Store meta information of the experimental conditions. / environment
- Exchange data within the group and with colleagues

How to exchange and store experimental data and the corresponding meta information

- Make data Findable, Accessible, Interoperable, and Repurposable
 - Define (NeXus) Application definition

APPLICATION DEFINITION

NeXus-FAIRmat

Proposal of NeXus expansion for FAIRmat data.

Navigation

FAIRmat-NeXus Proposal

NeXus Documentation

B1: Electron microscopy

B2/B3: Photoemission & core-

level spectroscopy

B4: Optical spectroscopy

B5: Atom-probe tomography

Transport Phenomena

Geometry & microstructure

Nomad Remote Tools Hub

(NORTH)

Quick search

Go

Google search

User Manual and Reference Documentation

NeXus is developed as an

international standard by

facilities in Europe, Asia,

scientists and programmers

representing major scientific

Australia, and North America

in order to facilitate greater

cooperation in the analysis

and visualization of neutron.

x-ray, and muon data.

Welcome to the user manual of the NeXus

https://www.nexusformat.org/

- · FAIRmat-NeXus Proposal
 - Aim
 - · Our scope and perspecti
 - · Outreach to the commun
 - Which data should I conv
- NeXus Documentation
 - NeXus: User Manual
 - · Examples of writing and
 - NeXus: Reference Docur
 - NeXus Community
 - Installation
 - NeXus Utilities
 - About these docs
- · B1: Electron microscopy
 - Introduction
 - New Application Definitions
 - New Base Classes
 - New Common Base Classes
 - Deprecated
- · B2/B3: Photoemission & core-level spectroscopy
 - Introduction
 - New Application Definitions
 - New Base Classes
 - New Common Base Classes
 - Base Classes Extended in Application Definitions
- B4: Optical spectroscopy

fairmat-experimental.github.io/nexus-fairmat-proposal

Ellipsometry Structure

Introduction

Ellipsometry is an optical characterization method to describe optical properties of interfaces and thickness of films. The measurements are based on determining how the polarization state of light changes upon transmission and reflection. Interpretation is based on Fresnel equations and numerical models of the optical properties of the materials.

In the application definition we provide a minimum set of description elements allowing for a reproducible recording of ellipsometry measurements.

New Application Definitions

We created one application definition:

NXellipsometry:

A general application definition for ellipsometry measurements, including complex systems up to variable angle spectroscopic ellipsometry.

Base Classes Extended in Application Definitions

We use existent base classes in application definitions and add descriptors:

NXinstrument

Added fields to add information that is important for an ellipsometry setup, such as the ellipsometer type, the light source, the type of the sample stage, or the angle(s) of incidence, as well as information on calibration, focussing probes, data correction etc.

NXdetector

Added fields to describe spectroscopic detection with polarization (e.g. rotating analyzer).

3.3.3.17. NXellipsometry

3.3.3.17. NXellipsometry

Status:

application definition, extends NXobject

Description:

Ellipsometry, complex systems, up to variable angle spectroscopy.

Information on ellipsometry is provided, e.g. in:

NXellipsometry was accepted by NeXus as a contributed definition

https://manual.nexusformat.org/classes/contributed_definitions/NXellipsometry.html

- H. Fujiwara, Spectroscopic ellipsometry: principles and applications, John Wiley & Sons, 2007.
- R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland Publishing Company, 1977.
- H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry, William Andrew, 2005.

Open access sources:

- https://www.angstromadvanced.com/resource.asp
- https://pypolar.readthedocs.io/en/latest/

Review articles:

- T. E. Jenkins, "Multiple-angle-of-incidence ellipsometry", J. Phys. D: Appl. Phys. 32, R45 (1999), https://doi.org/10.1088/0022-3727/32/9/201
- D. E. Aspnes, "Spectroscopic ellipsometry Past, present, and future", Thin Solid Films 571, 334–344 (2014), https://doi.org/10.1016/j.tsf.2014.03.056
- R. M. A. Azzam, "Mueller-matrix ellipsometry: a review", Proc. SPIE 3121, Polarization: Measurement, Analysis, and Remote Sensing, (3 October 1997), https://doi.org/10.1117/12.283870
- E. A. Irene, "Applications of spectroscopic ellipsometry to microelectronics", Thin Solid Films 233, 96-111

ELLIPSOMETRY STRUCTURE

- Metadata are defined in the Application Definition NXellipsometry
- Metadata include information about:
 - The operator (name, affiliation etc.)
 - the ellipsometer (type, light source, detector etc.)
 - the sample and its environment
 - ...
- Entries can be required, recommended, and optional.

NeXus-FAIRmat

Proposal of NeXus expansion for FAIRmat data.

Navigation

FAIRmat-NeXus Proposal NeXus Documentation

B1: Electron microscopy
B2/B3: Photoemission & core-

level spectroscopy

B4: Optical spectroscopy

- Introduction
- New Application Definitions
- Base Classes Extended in Application Definitions

B5: Atom-probe tomography

Transport Phenomena

Geometry & microstructure

Nomad Remote Tools Hub

(NORTH)

Quick search

B4: Optical spectroscopy

Introduction

Ellipsometry is an optical characterization method to describe optical properties of interfaces and thickness of films. The measurements are based on determining how the polarization state of light changes upon transmission and reflection. Interpretation is based on Fresnel equations and numerical models of the optical properties of the materials.

In the application definition we provide a minimum set of description elements allowing for a reproducible recording of ellipsometry measurements.

New Application Definitions

We created one application definition:

NXellipsometry:

A general application definition for ellipsometry measurements, including complex systems up to variable angle spectroscopic ellipsometry.

Base Classes Extended in Application Definitions

We use existent base classes in application definitions and add descriptors:

NXinstrument

Added fields to add information that is important for an ellipsometry setup, such as the ellipsometer type, the light source, the type of the sample stage, or the angle(s) of incidence, as well as information on calibration, focussing probes, data correction etc.

NXdetector

Added fields to describe spectroscopic detection with polarization (e.g. rotating analyzer).

NXaperture

Added fields to define parameters that describe windows (e.g. windows of a UHV cryostat), such as the thickness and the orientation angle of the window, as well as reference data to calculate window effects.

General Structure

- General metadata, such as experiment identifier, user(s), start time etc.
- INSTRUMENT:
 - Ellipsometer (model, company, firmware etc.)
 - Light source
 - Stage
 - Detector
 - •
- SAMPLE:
 - Sample name, history, data identifier etc.
 - Data type (e.g. psi and Delta, Mueller matrix, etc.)
 - Measured data
 - Environment conditions
- Derived parameters (e.g. depolarization)
- plot(NXdata): default view of data

→ Details will be discussed on Friday

General Structure

- General metadata, such as experiment ic
- INSTRUMENT:
 - Ellipsometer (model, company, firmware etc.)
 - Light source
 - Stage
 - Detector
 - ...

ector

NeXus Definition Language (NXDL) Data Types https://manual.nexusformat.org/nxdl-types.html

https://manual.nexusformat.org/class

es/base classes/index.html#base-

NeXus base classes

class-definitions

- SAMPLE:
 - Sample name, history,
 - Data type (e.g. psi and
 - Measured data
 - Environment conditions
- Derived parameters (e.g. depolarization)
- plot(NXdata): default view of data

532 > 718 719 >

726

→ YAML: 62

63

77

78

87

88

94

95

>

64 >

727 >

(NXellipsometry): (NXentry): doc: ... definition: ... experiment_identifier: ... experiment_description: ... start_time(NX_DATE_TIME): acquisition_program (NXprocess) (NXuser): ·· (NXinstrument): (NXsample): derived_parameters(NXprocess) plot(NXdata): ···

UNIVERSITÄT C. Sturm: Felix Bloch Institute for Solid State Physics

NeXus-FAIRmat

Proposal of NeXus expansion for FAIRmat data.

Navigation

FAIRmat-NeXus Proposal

NeXus Documentation

- NeXus: User Manual
- Examples of writing and reading NeXus data files
- NeXus: ReferenceDocumentation
- NeXus Community

NXellipsometry

R45

D. E

https://fairmat-experimental.github.io/nexus-fairmat-proposal/1c3806dba40111f36a16d0205cc39a5b7d52ca2e/classes/contributed_definitions/NXellipsometry.html#nxellipsometry

Official telephone number of the user.

INSTRUMENT: (required) NXinstrument

Please feel free to leave comments, questions or suggestions

Ellipsometry Application Definition

! NXellipsometry.yaml ×

727 >

736

plot(NXdata): ···

→ YAML file can be read by any editor

```
optical_spectroscopy > ! NXellipsometry.yaml > {} (NXellipsometry)
      category: application
                                                          symbols:
                                                    46
      doc: ···
                                                           doc: "Variables used throughout the document, e.g. dimensions and important parameters"
                                                    47
 45
                                                           N wavelength: "Size of the energy or wavelength vector used, the length of
                                                    48
     > symbols: ...
                                                             NXinstrument/spectrometer/wavelength array"
                                                    49
 61
                                                           N variables: "How many variables are saved in a measurement. e.g. 2 for Psi
                                                    50
                                                             and Delta, 16 for Mueller matrix elements, 15 for normalized
       (NXellipsometry):
 62
                                                    51
                                                             Mueller matrix, 3 for NCS, the length of NXsample/column names"
                                                    52
 63
         (NXentry):
                                                           N angles: "Number of incident angles used, the length of
                                                    53
 64 >
           doc: ···
                                                             NXinstrument/angle_of_incidence array"
                                                    54
 77
                                                    55
           definition: ...
 78 >
                                                    56
                                                           N p1:
 87
                                                             "Number of sample parameters scanned, if you varied any of the parameters
                                                    57
           experiment identifier: ...
 88 >
                                                             such as temperature, pressure, or pH, the maximal length of the arrays
                                                    58
 94
                                                             specified by NXsample/environment_conditions/SENSOR/value if it exists."
                                                    59
 95 >
           experiment description: ...
                                                           N time: "Number of time points measured, the length of NXsample/time_points"
                                                    60
 99
                                                                              The Symbols table describes keywords used in
           start_time(NX_DATE_TIME): ...
100 >
                                                                              this NXDL file to designate array dimensions.
102
           acquisition_program(NXprocess): ...
103 >
119
                                            ellipsometer type, light source, sample stage,
           (NXuser): ···
120 >
                                            angle(s) of incidence, information on calibration,
141
           (NXinstrument): ...
142
                                            focusing probes, data correction etc.
531
532
           (NXsample): ···
                                                   sample and material properties, the sample environment
718
                                                    (e.g. refractive index of surrounding medium), experimental
           derived_parameters(NXprocess): ...
719 >
                                                   conditions (e.g. temperature, pressure, pH value etc.).
726
```

Ellipsometry Application Definition

NXellipsometry.yaml ×

736


```
(NXellipsometry):
                                                  General Metadata
 (NXentry):
   doc:
     This is the application definition describing ellipsometry experiments.
     Such experiments may be as simple as identifying how a reflected
     beam of light with a single wavelength changes its polarization state,
     to a variable angle spectroscopic ellipsometry experiment.
     The application definition defines:
     * elements of the experimental instrument
     * calibration information if available
     * parameters used to tune the state of the sample
     * sample description
   definition:
     doc: "An application definition for ellipsometry."
     \@version:
       doc: "Version number to identify which definition of this application
         definition was used for this entry/data."
     \@url:
       doc: "URL where to find further material (documentation, examples)
         relevant to the application definition"
     enumeration: [NXellipsometry]
   experiment identifier:
     doc:
       Unique identifier of the experiment, such as a (globally persistent) unique
       identifier.
       i) The identifier is usually defined by the facility or principle investigator.
       ii) The identifier enables to link experiments to e.g. proposals.
   experiment description:
     exists: recommended
     doc: "A free-text description of the experiment. What is the aim of the
       experiment? The general procedure."
   start time(NX DATE TIME):
     doc: "Start time of the experiment. UTC offset should be specified."
```

```
acquisition_program(NXprocess):
 exists: optional
  program:
   doc: "Commercial or otherwise defined given name to the program that was
     used to generate the result file(s) with measured data and metadata.
     This program converts the measured signals to ellipsometry data. If
     home written, one can provide the actual steps in the NOTE subfield
     here."
 version:
   doc: "Either version with build number, commit hash, or description of
     a (online) repository where the source code of the program and build
     instructions can be found so that the program can be configured in
     such a way that result files can be created ideally in a
     deterministic manner."
  \@url:
   doc: "Website of the software."
(NXuser):
 exists: [min, 1]
 doc: "Contact information of at least the user of the instrument or the
   investigator who performed this experiment.
   Adding multiple users if relevant is recommended."
  name:
   doc: "Name of the user."
  affiliation:
   doc: "Name of the affiliation of the user at the point in time when the
     experiment was performed."
 address:
   doc: "Full address (street, street number, ZIP, city, country) of the
     user's affiliation."
  email:
   doc: "Email address of the user."
 orcid:
   exists: recommended
   doc: "Author ID defined by https://orcid.org/."
 telephone number:
   exists: recommended
                                                                     19
   doc: "Official telephone number of the user."
```

Ellipsometry Application Definition - INSTRUMENT

Ellipsometry Application Definition - INSTRUMENT

```
142
           (NXinstrument):
             doc: "General properties of the ellipsometry equipment"
143
144 >
             model: ···
149 >
             company: ···
152
153 >
             construction year(NX DATE TIME): ...
157
158 >
             firmware: ...
165
166 >
             light source(NXsource): ...
178
179 >
             focussing probes(NX BOOLEAN): ...
181
182 >
             data correction(NX BOOLEAN): ...
185
             angular spread(NX NUMBER): ...
186 >
190
191 >
             ellipsometry type: ...
208
209 >
             calibration status(NX CHAR): ...
221
222 >
             calibration(NXsubentry): ...
295
296 >
             angle of incidence(NX NUMBER): ...
303
304 >
             stage(NXsubentry): ...
345
346 >
             window(NXaperture): ...
408
409 >
             (NXdetector): ···
474
475 >
             spectrometer(NXmonochromator): ...
531
```

ellipsometry_type: (required) NX_CHAR

What type of ellipsometry was used? See Fujiwara Table 4.2

Any of these values:

- rotating analyzer
- rotating analyzer with analyzer compensator
- rotating analyzer with polarizer compensator
- rotating polarizer
- rotating compensator on polarizer side
- rotating compensator on analyzer side
- modulator on polarizer side
- modulator on analyzer side
- dual compensator
- phase modulation
- imaging ellipsometry
- null ellipsometry

calibration_status: (required) NX_CHAR

Was a calibration performed? If yes, when was it done? If the calibration time is provided, it should be specified in calibration/calibration time.

Any of these values:

- calibration time provided
- no calibration
- within 1 hour
- within 1 day
- within 1 week

Ellipsometry Application Definition - INSTRUMENT

```
142
           (NXinstrument):
             doc: "General properties of the ellipsometry equipment"
143
144 >
             model: ···
149 >
             company: ···
152
153 >
             construction year(NX DATE TIME): ...
157
158 >
             firmware: ...
165
166 >
             light source(NXsource): ...
178
179 >
             focussing probes(NX BOOLEAN): ...
181
182 >
             data correction(NX BOOLEAN): ...
185
             angular spread(NX NUMBER): ...
186 >
190
191 >
             ellipsometry type: ...
208
209 >
             calibration status(NX CHAR): ...
221
222 >
             calibration(NXsubentry): ...
295
296 >
             angle of incidence(NX NUMBIR): ...
303
304 >
             stage(NXsubentry): ...
345
             window(NXaperture)
346 >
408
409 >
             (NXdetector): ···
474
             spectrometer(NXmonochromator): ...
475 >
531
```

DETECTOR: (required) NXdetector

Which type of detector was used, and what is known about it? A detector can be a photomultiplier (PMT), a CCD in a camera, or an array in a spectrometer. If so, the whole detector unit goes in here. Integration time is the count time field, or the real time field. See their definition.

detector_type: (required) NX_CHAR

What kind of detector module is used, e.g. CCD-spectrometer, CCD camera, PMT, photodiode, etc.

Any of these values:

- PMT
- photodiode
- avalanche diode
- CCD camera
- CCD spectrometer
- other

other_detector: (optional) NX_CHAR

If you specified 'other' as detector type, please write down what it is.

```
revolution: (optional) NX NUMBER {units=NX ANY}
```

Define how many rotations of the rotating element were taken into account per spectrum.

Ellipsometry Application Definition - SAMPLE

```
531
532
           (NXsample):
533
             doc: "Properties of the sample, its history, the sample environment
               and experimental conditions (e.g. surrounding medium, temperature
534
               pressure etc.), along with the data (data type, wavelength armay,
535
536
               measured data)."
537 >
             atom types: ...
544 >
             sample name: ...
546
547 >
             sample history: ...
555
556 >
             preparation date(NX DATE TIME): ...
559
560 >
             layer structure: ...
563
564 >
             data identifier(NX NUMBER): ...
568
569 >
             data type: ...
585
586 >
             column names: ...
594
595 >
             measured data(NX NUMBER): ...
609
610 >
             data error(NX NUMBER): ...
625
626 >
             time_points(NX_NUMBER): ...
633
             environment conditions(NXenvironment): ...
634 >
718
```

data_type: (required) NX_CHAR

Select which type of data was recorded, for example Psi and Delta (see: https://en.wikipedia.org/wiki/Ellipsometry#Data_acquisition). It is possible to have multiple selections. Data types may also be converted to each other, e.g. a Mueller matrix contains N,C,S data as well. This selection defines how many columns (N variables) are stored in the data array.

Any of these values:

- psi/delta
- tan(psi)/cos(delta)
- Mueller matrix
- Jones matrix
- N/C/S
- raw data

column_names: (required) NX_CHAR (Rank: 1, Dimensions: [N_variables])

Please list in this array the column names used in your actual data. That is ['psi', 'delta'] or ['MM1', 'MM2', 'MM3', ..., 'MM16] for a full Mueller matrix, etc.

measured_data: (required) NX_NUMBER (Rank: 5, Dimensions: [N_time, N_p1, N_angles, N_variables, N_wavelength])

Resulting data from the measurement, described by data type. Minimum two columns containing Psi and Delta, or for the normalized Mueller matrix it may be 16 (or 15 if the element (1,1) is all 1).

Ellipsometry Application Definition - SAMPLE

```
531
532
           (NXsample):
             doc: "Properties of the sample, its history, the sample environment
533
               and experimental conditions (e.g. surrounding medium, temperature,
534
535
               pressure etc.), along with the data (data type, wavelength array,
               measured data)."
536
537 >
             atom types: ...
             sample name: ...
544 >
546
             sample history: ...
547 >
555
556 >
             preparation date(NX DATE TIME): ...
559
560 >
             layer structure: ...
563
564 >
             data identifier(NX NUMBER): ...
568
569 >
             data type: ...
585
586 >
             column names: ...
594
             measured data(NX NUMBER): ...
595 >
609
610 >
             data error(NX NUMBER): ...
625
626 >
             time points(NX NUMBER): ...
633
             environment conditions(NXenvironment): ...
634 >
718
```

```
environment conditions(NXenvironment):
 doc: "Specify external parameters that have influenced the sample."
  medium:
   doc: "Describe what was the medium above or around the sample. The
      common model is built up from the substrate to the medium on the
      other side. Both boundaries are assumed infinite in the model.
     Here, define the name of the medium (e.g. water, air, UHV, etc.)."
 medium refractive indices(NX NUMBER): ...
 number of runs(NX UINT): ...
 varied parameters: ...
 optical excitation(NXsource):
   exists: optional
   doc: ···
   wavelength(NX NUMBER): ...
   broadening(NX NUMBER): ...
   duration(NX NUMBER): ...
   pulse energy(NX NUMBER): ...
 (NXsensor):
   exists: optional
   doc: "A sensor used to monitor an external condition. The value
     field contains the measured values. If it is constant within
     an error for every run then use only an array of length one."
```

Questions or Comments?

If you have questions regarding the ellipsometry application definition, please feel free to contact us:

Carola Emminger: emminger.carola@physik.hu-berlin.de

Chris Sturm: csturm@physik.uni-leipzig.de

You can also leave comments at <a href="https://fairmat-experimental.github.io/nexus-fairmat-proposal/1c3806dba40111f36a16d0205cc39a5b7d52ca2e/classes/contributed_definitions/NXellipsometry.html#nxellipsometry

